There were several interesting details that came out of the Deutsche Telekom Capital Markets Day 2012. The primary announcement concerned T-Mobile USA being blessed with the ability to sell the iPhone. T-Mobile's new CEO, John Legere indicated that it will have a dramatically different experience than the other iPhone on the market. In addition T-Mobile will sell it unsubsidized, although they will offer financing plans. This should continue to drive T-Mobile's Cost Per Gross Add (CPGA) down, although they didn't disclose if this only affects their iPhone retail business or potentially all of their retail. This is a dramatic step which eliminate the primary issue that I have had with the subsidy pricing model. I have a problem with paying the same monthly rate for my smartphone if I am out of contract as the guy that who just got a new device. With T-Mobile's plan the true cost of upgrading will be carried by the customer, with the expectation of lower monthly rates.
Above is a restatement of the testing data from PC Magazine which T-Mobile released. It is interesting to note how far their speeds have fallen from their early announcements in late 2010 concerning the HSPA+ network. It is also worth noting that they compared AT&T's LTE network. You can again see the loading effect on the network. AT&T's Chicago network was launched September 2011 so it has been loading for over a year reflecting the slower speeds. AT&T's complete New York and San Francisco networks are much newer, launching September 2012, thus carrying less traffic. I am curious why T-Mobile did not chose to compare themselves to AT&T's 4G (HSPA+) network.
From a LTE network build perspective, this was the first time I have heard clearly that T-Mobile is deploying tower top electronics. It is interesting that they state that they are the first carrier in North America to broadly deploy radio-integrated antennas. Clearwire was the first carrier to deploy tower top base stations, followed by Sprint with their Network Vision project. T-Mobile is playing up the fact that their radios are some how integrated into the antenna. Not really an earth shattering announcement. From a technology perspective, deploying the tower top base stations will fill in coverage holes and improve data speeds so it is a good move. In addition, these base stations will be Release 10 capable, meaning a software update will move these radio from the LTE features to the LTE Advance features.
The Numbers:
- Current 4G Network covers 225 million POPs
- Release 10 Equipment being deployed to 37,000 cell sites
- T-Mobile and MetroPCS: Migration not Integration
- With MetroPCS Spectrum Position across Top 25 service areas is improved by 21%
- Planning to shutdown 10,000 macro sites from MetroPCS
- Retain and integrate 1,000 MetroPCS sites
- Operating MetroPCS Markets
- San Francisco
- Detroit
- Boston
- New York
- Dallas
- Atlanta
- Florida (except panhandle)
- MetroPCS brand will increase coverage from 105MPOPs to more than 280MPOPs.
Clearly the wireless industry has locked in spectrum pricing with the MHz-POP pricing model, but is this the right way to look at it as we move into a 4G World where data throughput and capacity are key? For those that aren't familiar, the typical value of spectrum is determined by the $/MHzPOP which is the dollars spent for the spectrum divided by the total amount of spectrum times population that spectrum covers. This model falls short now as carriers are interested in acquiring larger contiguous blocks of spectrum enabling higher users speeds and more capacity.
To use a real estate analogue, a large plot of land is much for flexible for multiple uses, than two plots, even if they are in the same neighborhood. In real estate, the developer that is able to consolidate several tracks of land into a larger development is rewarded as he sells the larger development.
In the wireless industry, we continue to price based upon the $/MHz POP basis, even as carriers such as T-Mobile and Clearwire have combined adjacent channels to create larger bands of spectrum to utilize in larger LTE channels. T-Mobile has worked this year with Verizon, SpectrumCo, and MetroPCS which will allow it to assimilate a 2X20MHz LTE channel on a national basis. Clearwire has leased and purchased operators in the BRS and EBS spectrum bands providing it with an average of 160MHz of spectrum in the top markets. Since Clearwire's spectrum has many geographical boundaries, it is difficult to say how many 20MHz channels they could support across each of their markets, but they have been successful consolidating small bands of spectrum into larger more flexible spectrum bands.
How does a larger band of spectrum affect the wireless carriers? In the US, carriers have deployed FDD-LTE in 1.25MHz channels, 5MHz channels, and 10MHz channels. As you increase the channel size throughput performance improves because a lower percentage of the data packets are dedicated to overhead activities Qualcomm has provided achievable LTE Peak Data Rates for different channel bandwidths based upon whether the antennas are 2x2 or 4x4 MIMO.
Link to Qualcomm DocumentAs you can see in the 4x4 MIMO downlink case, the throughput is 12Mbps greater in the 20MHz channel than the composite of 4-5MHz channels.
So if a 20MHz channel is 4% more efficient than 4 - 5MHz channels should the MHz POPs pricing adjust accordingly?
By the way.. I am going to look for more source data on the capacity improvements for wider channels, a 4% improvement would seem to be relatively negligible. I recall hearing 30% improvements in capacity when a channel size is doubled, but I haven't been able to re-source that data for this blog. More to come.